

Daily Tutorial Sheet-1

JEE Advanced (Archive)

1.(D) $4 \text{ Al} + 3 \text{ O}_2 \rightarrow 2 \text{ Al}_2 \text{ O}_3$

Atomic weight of Al = 27

Thus $4 \times 27 \, g$ of Al reacts with oxygen = $3 \times 32 \, g$

$$\therefore \qquad 27 \, \text{g of Al reacts with oxygen} \, = \frac{3 \times 32}{4 \times 27} \times 27 = 24 \, \text{g}$$

2.(A) In both cases, the same volume of hydrogen is evolved for the same amount of zinc reacted.

$$Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2 \uparrow$$

$$Zn + 2NaOH \longrightarrow Na_2ZnO_2 + H_2 \uparrow$$

3. Equivalent of $KMnO_4$ = Equivalents of $FeSO_4 \cdot 7H_2O$

5.4 ml of 0.1 N KMnO₄ =
$$\frac{5.4 \times 0.1}{1000}$$
 = 5.4×10⁻⁴ equivalents

Amount of $FeSO_4 = 5.4 \times 10^{-4} \times Mol.$ wt. of $FeSO_4 \cdot 7H_2O$

$$=5.4 \times 10^{-4} \times 278 = 0.150 \,\mathrm{g}$$

Total weight of mixture = 5.5 g

Amount of ferric sulphate = 5.5 - 0.150 g = 5.35 g

Hence moles of ferric sulphate = $\frac{Mass}{Mol. wt.} = \frac{5.35}{562} = 9.5 \times 10^{-3} \text{ gram-mole.}$

4.(A) The change involved is $MnO_4^- + e^- \longrightarrow MnO_4^{2-}$

i.e. it involves only one electron

Eq. wt. =
$$\frac{\text{Mol. wt.}}{\text{number of e}^- \text{ involved}} = \frac{M}{1} = M$$
 [: Mol. wt. = M]

5. The complete oxidation under acidic conditions can be represented as follows :

$$5 {\rm H_2O_2} + 2 {\rm MnO_4^-} + 6 {\rm H^+} \rightarrow 5 {\rm O_2} + 2 {\rm Mn^{2+}} + 8 {\rm H_2O}$$

Since 34 g of
$$H_2O_2 = 2000 \,\text{ml} \,\text{of} \, 1\text{N} \, H_2O_2$$
 $\left\{ \because \, \text{Eq. wt. or} \, H_2O_2 = \frac{34}{2} \right\}$

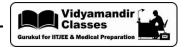
$$\therefore \qquad 34 \text{ g of } H_2O_2 = 2000 \text{ ml of } 1 \text{ N KMnO}_4 \qquad [\because N_1V_1 = N_2V_2]$$

or
$$\frac{X}{10}$$
 g of $H_2O_2 = \frac{2000 \times X}{100 \times 34}$ ml of 1 N KMnO₄

Therefore the unknown normality = $\frac{2000 \times X}{34 \times 100 \times X} = \frac{10}{17}$ or 0.588 N

6.(C) $N_2H_4 \rightarrow Y + 10e^-$, O.S. of N in $N_2H_4: 2x + 4 = 0 \implies x = -2$

The two nitrogen atoms will balance the charge of 10e


Hence oxidation state of N will increase by +5, i.e. from -2 to +3

7. Given:
$$2 \text{ NH}_2 \text{OH} + 4 \text{ Fe}^{3+} \rightarrow \text{N}_2 \text{O} + \text{H}_2 \text{O} + 4 \text{Fe}^{2+} + 4 \text{ H}^+$$
 (i)

and
$$MnO_4^- + 5Fe^{2+} + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$
 (ii)

$$\therefore$$
 10 NH₂OH + 4 MnO₄⁻ + 12 H⁺ \rightarrow 5 H₂O + 21H₂O + 4 Mn²⁺

[On multiplying (i) by 5 and (ii) by 4 and then adding the resulting equations] Molecular weight of NH2OH = 33 $\,$

Thus 4000 ml of 1 M MnO_4^- would react with $NH_2OH = 330 g$

∴ 12 ml of 0.02 M MnO₄ would react with

$$NH_2OH = \frac{330 \times 12 \times 0.02}{4000}g$$

 $\therefore \quad \text{Amount of NH}_2\text{OH present in 1000 ml of diluted solution} = \frac{330 \times 12 \times 0.02 \times 1000}{4000 \times 50} g$

Since 10 ml of sample of hydroxylamine is diluted to one litre

:. Amount of hydroxyl amine in one litre of original solution

$$=\frac{330\times0.02\times12\times1000}{4000\times50}\times\frac{1000}{10}\,g=39.6\,g$$

8.(C) The sum of oxidation states of all atoms in compound is zero

O.S. of C in CH₂O

$$x+2+(-2)=0 \qquad \Rightarrow \qquad x=0$$

9.(B) Equivalent weight = $\frac{\text{molecular weight}}{\text{n - factor}}$

If n factor is 1, then equivalent weight will be equal to its molecular weight

In $MnSO_4$, the oxidation state of Mn is +II, $In \ Mn_2O_3$, the oxidation state of Mn is +III

In MnO_2 , the oxidation state of Mn is +IV, In MnO_4^- , the oxidation state of Mn is +VII

In MnO_4^{2-} , the oxidation state of Mn is + VI

Thus, when $MnSO_4$ is converted into MnO_2 , then the n factor is 2, and the equivalent weight of $MnSO_4$ will be half of its molecular weight

10. Since in acidic solution

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

 MnO_4^- gains $5e^-$

So, its equivalent $wt = \frac{\text{molecular weight}}{5}$

It means 1.61×10^{-3} moles of $MnO_4^- = 5 \times 1.61 \times 10^{-3}$ equivalents

$$A^{n+} \rightarrow AO^{3-}$$
 (oxidation number of A in $AO_3^- = 5$)

Loss of electron = (5 - n)

 \therefore 2.68×10⁻³ moles of the solution containing A⁺ ions = (5 – n)×2.68×10⁻³ equivalents

Equivalents of oxidised 'A' = Equivalents of reduced A

$$(1.61 \times 10^{-3}) \times 5 = (5 - n) \times 2.68 \times 10^{-3}$$


$$(5-n) = \frac{1.61 \times 10^{-3} \times 5}{2.68 \times 10^{-3}} = 3 \qquad (5-n) = 3$$

$$\therefore$$
 n = 5 - 3 = 2

11.(A) Sum of oxidation of all atoms in neutral compound is zero. Let the oxidation state of iron in the complex ion

$$[Fe(H_2O)_5(NO)]^{2+}SO_4^{2-}$$
 be x; then $x + 5 \times 0 + 1 = +2$

$$\Rightarrow$$
 $x = +1$

12. Meq. of sodium bromate =
$$85.5 \times 0.672 = 57.456$$

(i)
$$\therefore$$
 Meq. of NaBrO₃ = 57.456

$$\therefore \frac{w}{E} \times 1000 = 57.456$$

$$\therefore \frac{w}{151/6} \times 1000 = 57.456 \qquad \left(\because E_{NaBrO_3} = \frac{M}{6} = \frac{151}{6}\right)$$

$$w = \frac{57.456 \times 151}{6 \times 1000} = 1.446 g$$

Also, molarity =
$$\frac{normality}{n \text{ factor}} = \frac{0.672}{6} = 0.112 \text{ M}$$

(ii) Similarly use n factor 5 in place of 6 in this problem,

Hence
$$w = \frac{57.456 \times 151}{5 \times 1000} = 1.735 \, g$$
 and molarity $= \frac{0.672}{5} = 0.1344 \, M$

13. The redox changes are

For
$$FeCl_3: Fe^{3+} + e^{-} \rightarrow Fe^{2+}$$

For
$$N_2H_6SO_4: N_2^{4-} \rightarrow N_2 + 4e^-$$

For
$$KMnO_4: Mn^{7+} + 5e^- \rightarrow Mn^{2+}$$

Meq. of N₂H₆SO₄ in 10 mL solution

= Meq. of FeCl
$$_3$$
 reacting with $N_2H_6SO_4$ = Meq. of KMnO $_4$

$$\therefore \qquad \text{Meq. of } N_2H_6SO_4 \text{ in } 10 \text{ mL solution} = 20 \times \frac{1}{50} \times 5 = 2$$

$$\therefore \frac{\text{w}}{130/4} \times 1000 = 2 \qquad \text{(} \therefore \text{ Equivalent of N}_2\text{H}_6\text{SO}_4 = \frac{130}{4}\text{)}$$

$$w = \frac{2 \times 130}{4 \times 1000} = 0.065 g$$

$$\therefore$$
 Weight of $N_2H_6SO_4$ in 10 mL = 0.065 g

$$\therefore$$
 Thus wt. of N₂H₆SO₄ in 1000 mL = 6.5 g/L

14.(B) BaO₂ + H₂SO₄ \rightarrow BaSO₄ + H₂O₂

Oxygen is the most electronegative element in the reaction and has the oxidation state of -1 (in H_2O_2) and -2 (in $BaSO_4$).

15. Let V mL of reducing agent be used for KMnO₄ in different medium which act as oxidant

Acid medium,
$$Mn^{7+} + n_1e^- \rightarrow Mn^{a+}$$

$$\therefore \qquad n_1 = 7 - a$$

Neutral medium,
$$Mn^{7+} + n_2e^- \rightarrow Mn^{b+}$$

$$\therefore \qquad n_2 = 7 - b$$

Alkaline medium, $Mn^{7+} + n_3e^- \rightarrow Mn^{c+}$

$$\therefore$$
 $n_3 = 7 - c$

.. Meq. of reducing agent

= Meq. of
$$KMnO_4$$
 in acid medium = Meq. of $KMnO_4$ in neutral

= Meq. of KMnO₄ in alkaline =
$$1 \times n_1 \times 20 = 1 \times n_2 \times 33.3 = 1 \times n_3 \times 100$$

Since n_1 , n_2 , n_3 are integers and $n_1 < 7$,

$$\therefore \qquad n_1 = 5, \ n_2 = 3 \ and \ n_3 = 1$$

Therefore, different oxidation states of Mn are:

Acid media
$$Mn^{7+} + 5e^- \rightarrow Mn^{a+}$$
 \therefore $a = +2$

Neutral media
$$Mn^{7+} + 3e^- \rightarrow Mn^{b+}$$
 : $b = +4$

Alkaline media
$$Mn^{7+} + le^- \rightarrow Mn^{c+}$$
 \therefore $c = +6$

Now same volume of reducing agent is treated with $\ensuremath{\mathrm{K}}_2\ensuremath{\mathrm{Cr}}_2\ensuremath{\mathrm{O}}_7$ and therefore,

Meq. of reducing agent = Meq. of $K_2Cr_2O_7$

$$20 \times 5 = 1 \times 6 \times V$$

$$V = \frac{100}{6} = 16.66 \,\text{mL}$$

$$\therefore \qquad 6\,e^- + C r_2^{12+} \rightarrow 2C r^{3+} \qquad \qquad \therefore \qquad \qquad 1M = 6 \times 1N$$

It is important to note that the conditions are valid only when Mn in each medium exist as monoatomic, i.e., not as $\,\mathrm{Mn}_2.$